Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.873
Filtrar
1.
Environ Res ; 247: 118127, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220075

RESUMO

Remediating inorganic pollutants is an important part of protecting coastal ecosystems, which are especially at risk from the effects of climate change. Different Phragmites karka (Retz) Trin. ex Steud ecotypes were gathered from a variety of environments, and their abilities to remove inorganic contaminants from coastal wetlands were assessed. The goal is to learn how these ecotypes process innovation might help reduce the negative impacts of climate change on coastal environments. The Phragmites karka ecotype E1, found in a coastal environment in Ichkera that was impacted by residential wastewater, has higher biomass production and photosynthetic pigment content than the Phragmites karka ecotypes E2 (Kalsh) and E3 (Gatwala). Osmoprotectant accumulation was similar across ecotypes, suggesting that all were able to successfully adapt to polluted marine environments. The levels of both total soluble sugars and proteins were highest in E2. The amount of glycine betaine (GB) rose across the board, with the highest levels being found in the E3 ecotype. The study also demonstrated that differing coastal habitats significantly influenced the antioxidant activity of all ecotypes, with E1 displaying the lowest superoxide dismutase (SOD) activity, while E2 exhibited the lowest peroxidase (POD) and catalase (CAT) activities. Significant morphological changes were evident in E3, such as an expansion of the phloem, vascular bundle, and metaxylem cell areas. When compared to the E3 ecotype, the E1 and E2 ecotypes showed striking improvements across the board in leaf anatomy. Mechanistic links between architectural and physio-biochemical alterations are crucial to the ecological survival of different ecotypes of Phragmites karka in coastal environments affected by climate change. Their robustness and capacity to reduce pollution can help coastal ecosystems endure in the face of persistent climate change.


Assuntos
Ecossistema , Ecótipo , Mudança Climática , Poaceae/química , Poaceae/metabolismo , Biomassa , Antioxidantes/metabolismo
2.
Appl Radiat Isot ; 205: 111170, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38160568

RESUMO

The levels of naturally occurring radionuclides in soil, grass, and milk were measured in this study in order to calculate the transfer factor of radionuclides from soil to grass and grass to milk obtained from Erbil governorate in Iraq. High efficiency gamma spectrometry used for the measurement. It has been determined that the mean activity concentrations of 232Th, 226Ra, and 40K are 3.08, 8.37, and 253 BqKg-1 in soil, 0.5, 0.39, and 203.05 BqKg-1, in grass, and 0.29, 0.084, and 29.69 BqL-1, in milk, respectively. For soil to grass, the transfer factor values for 232Th, 226Ra, and 40K were found to be 0.18, 0.052, and 0.84, respectively, for soil to grass. For grass to milk, the transfer factor values for 232Th, 226Ra, and 40K were found to be 0.45, 0.166, and 0.11 dayL-1, respectively. The average transfer factor for 232Th, 226Ra, and 40K in all samples were lower than the world average value.


Assuntos
Monitoramento de Radiação , Radioatividade , Poluentes Radioativos do Solo , Animais , Solo/química , Poaceae/química , Fator de Transferência/análise , Leite/química , Iraque , Monitoramento de Radiação/métodos , Poluentes Radioativos do Solo/análise , Radioisótopos/análise
3.
Adv Respir Med ; 91(6): 486-503, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37987298

RESUMO

Allergic diseases are a global public health problem that affects up to 30% of the population in industrialized societies. More than 40% of allergic patients suffer from grass pollen allergy. Grass pollen allergens of group 1 and group 5 are the major allergens, since they induce allergic reactions in patients at high rates. In this study, we used immunoinformatic approaches to design an effective epitope-based vaccine against the grass group 1 allergens. After the alignment of all known pollen T-cell and B-cell epitopes from pollen allergens available in the public databases, the epitope GTKSEVEDVIPEGWKADTSY was identified as the most suitable for further analyses. The target sequence was subjected to immunoinformatics analyses to predict antigenic T-cell and B-cell epitopes. Population coverage analysis was performed for CD8+ and CD4+ T-cell epitopes. The selected T-cell epitopes (VEDVIPEGW and TKSEVEDVIPEGWKA) covered 78.87% and 98.20% of the global population and 84.57% and 99.86% of the population of Europe. Selected CD8+, CD4+ T-cell and B-cell epitopes have been validated by molecular docking analysis. CD8+ and CD4+ T-cell epitopes showed a very strong binding affinity to major histocompatibility complex (MHC) class I (MHC I) molecules and MHC class II (MHC II) molecules with global energy scores of -72.1 kcal/mol and -89.59 kcal/mol, respectively. The human IgE-Fc (PDB ID 4J4P) showed a lower affinity with B-cell epitope (ΔG = -34.4 kcal/mol), while the Phl p 2-specific human IgE Fab (PDB ID 2VXQ) had the lowest binding with the B-cell epitope (ΔG = -29.9 kcal/mol). Our immunoinformatics results demonstrated that the peptide GTKSEVEDVIPEGWKADTSY could stimulate the immune system and we performed ex vivo tests showed that the investigated epitope activates T cells isolated from patients with grass pollen allergy, but it is not recognized by IgE antibodies specific for grass pollen allergens. This confirms the importance of such studies to establish universal epitopes to serve as a basis for developing an effective vaccine against a particular group of allergens. Further in vivo studies are needed to validate the effectiveness of such a vaccine against grass pollen allergens.


Assuntos
Hipersensibilidade , Rinite Alérgica Sazonal , Vacinas , Humanos , Alérgenos , Poaceae/química , Poaceae/metabolismo , Epitopos de Linfócito B/química , Rinite Alérgica Sazonal/prevenção & controle , Epitopos de Linfócito T , Simulação de Acoplamento Molecular , Sequência de Aminoácidos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Imunoglobulina E/química , Imunoglobulina E/metabolismo
4.
Food Chem ; 423: 136312, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37182491

RESUMO

Three genotypes each of bread wheat, durum wheat and tritordeum were grown in randomized replicated field trials in Andalusia (Spain) for two years and wholemeal flours analysed for a range of components to identify differences in composition. The contents of all components that were determined varied widely between grain samples of the individual species and in most cases also overlapped between the three species. Nevertheless, statistically significant differences between the compositions of the three species were observed. Notably, tritordeum had significantly higher contents of protein, some minerals (magnesium and iron), total phenolics and methyl donors. Tritordeum also had higher levels of total amino acids (but not asparagine) and total sugars, including raffinose. By contrast, bread wheat and tritordeum had similar contents of the two major dietary fibre components in white flour, arabinoxylan and ß-glucan, with significantly lower contents in durum wheat.


Assuntos
Pão , Triticum , Triticum/química , Pão/análise , Poaceae/química , Grão Comestível/química , Farinha/análise
5.
Environ Res ; 228: 115846, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37024027

RESUMO

Leersia hexandra Swartz (L. hexandra) is a promising hyperaccumulator for Cr pollution remediation, but whether its Cr phytoextraction is subject to the root surface-attached iron plaque (IP) remains unclear. In this research, the natural and artificial IPs were proven to be comprised of small amounts of exchangeable Fe as well as carbonate Fe, and dominantly Fe minerals involving amorphous two-line ferrihydrite (Fh), poorly crystalline lepidocrocite (Le) and highly crystalline goethite (Go). The Fe content in the artificial IPs augmented with increasing induced Fe(II) concentration, and the 50 mg/L Fe(II) led to the identical Fe content and different component proportions of artificial IP (Fe50) and natural IP. Fh was consisted of highly aggregated nanoparticles, and the aging of Fh caused its phase conversion to rod-like Le and Go. The Cr(VI) adsorption results of Fe minerals corroborated the coordination of Cr(VI) onto the Fh surface and the significantly greater equilibrium Cr(VI) adsorption amount of Fh over Le and Go. The greatest Cr(VI) reduction capacity of Fh among three Fe minerals was found to be related to its most abundant surface-adsorbed Fe(II) content. The results of hydroponic experiment of L. hexandra showed that the presence of IP facilitated the Cr(VI) removal by L. hexandra during the cultivation period of 10-45 days, and consequently, compared to the Fe0 group (without IP), around 60% of increase in the Cr accumulation of shoots was achieved by Fe50 group. The findings of this work are conductive to furthering our understanding of IP-regulated Cr phytoextraction of L. hexandra.


Assuntos
Cromo , Ferro , Cromo/química , Poaceae/química , Compostos Ferrosos , Oxirredução
6.
Int J Biol Macromol ; 241: 124461, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37086759

RESUMO

Bamboo (Phyllostachys pubescens) is an attractive biomass block to develop biorefining industry, however, less emphasis has been placed on elucidating the chemical linkage variations of lignin and LCC between different bamboo cell walls. Here, purified milled wood lignin (MWLp) and lignin-carbohydrate complex (LCC) were isolated from bamboo (Phyllostachys pubescens) fibers (BF) and parenchyma cells (PC), respectively. The variations of structure features and chemical linkages of lignin and LCC were investigated via FT-IR, 2D HSQC NMR, and 31P NMR techniques. 2D HSQC NMR revealed that ß-O-4 alkyl-aryl ether linkages and resinol (ß-ß) substructure were the main substructures in BF-MWLp and PC-MWLp. ß-1 linkages existed in the PC-MWLp (3.18/100 Ar), but not in BF-MWLp. Moreover, tricin, as a flavonoid compound, was only detected in the BF-MWLp. The amount of the syringyl (S) units of PC-MWLp was higher than BF-MWLp. The results indicated that phenyl glycoside (PhGlc) bonds (mainly lignin and xylan) were the predominant chemical linkage type of LCC bonds in BF-LCC and PC-LCC, and the high contents of PhGlc bonds (45.53/100 Ar) were presented in PC. Our finding can provide a reference for the structural variations of lignin and LCC between the different bamboo cell walls.


Assuntos
Glicosídeos Cardíacos , Lignina , Lignina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Poaceae/química , Espectroscopia de Ressonância Magnética , Glicosídeos , Xilanos/química
7.
Environ Res ; 227: 115749, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36965787

RESUMO

Phytoremediation technology is an important approach applied to heavy metal remediation, and how to improve its remediation efficiency is the key. In this study, we compared the rhizospheric bacterial communities and metals contents in Miscanthus floridulus (M. floridulus) of four towns, including Huayuan Town (HY), Longtan Town (LT), Maoer Village (ME), and Minle Town (ML) around the lead-zinc mining area in Huayuan County, China. The roles of rhizospheric bacterial communities in assisting the phytoremediation of M. floridulus were explored. It was found that the compositions of the rhizospheric bacterial community of M. floridulus differed in four regions, but majority of them were heavy metal-resistant bacteria that could promote plant growth. Results of bioconcentration factors showed the enrichment of Cu, Zn, and Pb by M. floridulus in these four regions were significantly different. The Zn enrichment capacity of ML was the strongest for Cu and stronger than LT and ME for Pb. The enrichment capacity of LT and ML was stronger than HY and ME. These bacteria may influence the different heavy metals uptake of M. floridulus by altering the soil physiochemical properties (e.g., soil peroxidase, pH and moisture content). In addition, co-occurrence network analysis also showed that LT and ML had higher network stability and complexity than HY and ME. Functional prediction analysis of the rhizospheric bacterial community showed that genes related to protein synthesis (e.g., zinc-binding alcohol dehydrogenase/oxidoreductase, Dtx R family transcriptional regulators and ACC deaminase) also contributed to phytoremediation in various ways. This study provides theoretical guidance for selecting suitable microorganisms to assist in the phytoremediation of heavy metals.


Assuntos
Metais Pesados , Poluentes do Solo , Chumbo/análise , Poluentes do Solo/análise , Metais Pesados/análise , Zinco/análise , Poaceae/química , Poaceae/metabolismo , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Solo
8.
Bioorg Chem ; 133: 106414, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36774691

RESUMO

The demand for metal nanoparticles is increasing with the widening application areas while causing environmental impact including pollution, toxic byproduct generation and depletion of natural resources. Incorporating natural materials in nanoparticle synthesis can contribute toward environmental sustainability. This paper is concerned with the biogenic synthesis of copper oxide nanoparticles (CuONPs) mediated by the plant species Phragmites australis. UV-vis, FT-IR, TEM and SEM studies were used to characterize the obtained CuONPs. The synthesized nanoparticles' antibacterial efficacy against Escherichia coli and Staphylococcus aureus was assessed. The CuONPs' reducing power, total phenolic component content, and flavonoid content were all calculated. Additionally, the dye removal abilities of copper oxide nanoparticles using Brilliant Blue R-250 were studied. The CuONP synthesis was assessed morphological by change of color and in the UV-vis analysis by the SPR band around 320 and 360 nm. FT-IR was used to monitor the functional groups present in the synthesized CuONPs. The obtained CuONPs were spherical and between 70 and 142 nm in size, according to the SEM data and TEM analyses were in accordance with SEM results. Using disk diffusion, the CuONPs demonstrated substantial antibacterial efficacy against S. aureus and E. coli, with inhibition zones of 18.5 ± 0.8 and 12.7 ± 0.6 mm, respectively. The MBC and MIC values were 62.5 µg/mL against S. aureus and 125 µg/mL against E. coli. The antioxidant abilities of P. australis and CuONPs were also confirmed. The CuONP solution's total phenolic substance content was 9.44 µg of pyrocathecol equivalent per milligram of nanoparticle, and its total flavonoid content was 16.24 µg of catechin equivalent per milligram of nanoparticle. Additionally, the synthesized CuONPs were found to be well effective on industrial dye removal by demonstrating high decolorization of 98 %. Also, the antibacterial activity of CuONPs was investigated through the interactions with S. aureus FtsZ, dihydropteroate synthase and thymidylate kinase. In silico molecular docking analysis was applied in the confirmation of the binding sites and interactions of active sites. CuONP showed -9.067, -8,048, and -7.349 kcal/mol of binding energies in molecular docking analysis of FtsZ, dihydropteroate synthase and thymidylate kinase proteins respectively. The results of this study suggested the antimicrobial, antioxidant and decolorative effect of synthesized CuONPs that can be apply in multiple areas of R&D and industry.


Assuntos
Produtos Biológicos , Nanopartículas Metálicas , Nanopartículas , Poaceae , Antibacterianos/farmacologia , Antibacterianos/química , Antioxidantes/farmacologia , Cobre/farmacologia , Cobre/química , Di-Hidropteroato Sintase , Escherichia coli , Nanopartículas Metálicas/química , Simulação de Acoplamento Molecular , Nanopartículas/química , Óxidos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus , Produtos Biológicos/química , Poaceae/química , Poaceae/metabolismo
9.
J Nat Med ; 77(2): 379-386, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36637708

RESUMO

ABSTRUCT: n-Hexane extract of rhizomes of Imperata cylindrica var. koenigii f. pallida yielded five novel skeletal triterpenoids, designed as impallidin (1), impallidol (2), impallidin ozonide (3a, 3b), trisnorimpallidin aldehyde (4), tetranorimpallidin aldehyde (5). Structures of novel compounds were elucidated by mainly 2D NMR and other spectroscopic analysis and chemical correlations. Alternatively, compound 3a, 3b was derivatized from 1 under ozone oxidation condition.


Assuntos
Triterpenos , Triterpenos/química , Poaceae/química , Rizoma/química , Espectroscopia de Ressonância Magnética , Esqueleto
10.
Environ Sci Pollut Res Int ; 30(9): 22305-22318, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36287369

RESUMO

Phytoremediation, as a cost-effective, highly efficient, environmentally friendly, and green approach, gained attention to the removal of metals, including heavy metals, from contaminated soils. The toxic nature of heavy metals can have an adverse effect on human health and the ecosystem, and their removal remains a worldwide problem. Therefore, in this study, a field experiment was carried out to evaluate the potential of Miscanthus × giganteus for the removal of ten microelements and heavy metals (Al, Zn, Fe, Pb, Cd, Co, Cr, Cu, Mn, Ni) from contaminated soil in the territory of a Municipal Waste Rendering Plant. Moreover, the effect of the incorporation of soil improver obtained upon composting biodegradable waste as well as the addition of highly contaminated post-industrial soil on the efficiency of phytoremediation and plant growth was described. The soil improver (SK-8) was applied to the soil at a rate of 200 Mg ha-1 and 400 Mg‧ha-1. Meanwhile, in the last object, 100 Mg‧ha-1 of highly contaminated post-industrial soil was added. Herein, the research was aimed at assessing the possibility of phytoextraction of heavy metals from soils with different physicochemical properties. The results showed that plants cultivated in soil with 400 Mg‧ha-1 of soil improver exhibited the highest yield (approximately 85% mass increase compared to the soil without additives). Furthermore, the application of a single dose of SK-8 (200 Mg ha-1) increased the uptake of Al, Fe, Co, Pb, Mn, Ni, and Cd by Miscanthus × giganteus compared to the soil without additives. Additionally, the performed biotests demonstrated no or low toxicity of the investigated soils affecting the test organisms. However, in all experiments, the phytorecovery of the elements did not exceed 1% of the amount introduced to the soil, which may result from a short cultivation period and large doses of SK-8 or highly contaminated post-industrial soil.


Assuntos
Metais Pesados , Poluentes do Solo , Humanos , Cádmio/metabolismo , Solo/química , Ecossistema , Chumbo/metabolismo , Poluentes do Solo/análise , Metais Pesados/análise , Poaceae/química , Plantas/metabolismo , Biodegradação Ambiental
11.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36576899

RESUMO

Carbohydrates in forages constitute an important part of the feed ration for all horses. The aim of the present study was to investigate the effect of harvest time on carbohydrate composition and digestion of various grass species. The experiment was divided into three parts 1) characterization of the chemical composition of experimental feeds (6 grass species: meadow fescue [MF], cocksfoot [CF], perennial ryegrass [PR], smooth bromegrass [SB], tall fescue [TF], and timothy [TI], and 3 harvest times: early, medium, and late first cut), 2) measurements of the in vitro digestion of selected experimental feeds (the 6 grass species, and 2 harvest times [early and late]) measured by in vitro gas production, and 3) in vivo digestion of selected experimental feeds (2 grass species: CF and PR, 2 harvest times [early and late]) measured by the mobile bag technique using caecum cannulated horses. An experimental field was established with plots containing each of the grass species in three replicate blocks. Grass samples were cut between 1200 and 1400 h at 4th of June (early first cut), 17th of June (medium first cut), and 1st of July (late first cut) and analyzed for crude protein (CP), neutral detergent fiber with heat stable amylase and free of residual ash (aNDFom) and water-soluble carbohydrates (WSC). The in vitro fermentation was investigated using the ANKOM RF gas production technique, where feeds were incubated for 48 h using horse caecal fluid as an inoculum. Gas production was modeled, and maximum gas production (MGP) was used to evaluate the potential digestibility of the feeds. Based on the chemical analyses and the in vitro experiment, early and late harvested CF and PR were selected for the in vivo experiment, which was conducted as a randomized 4 × 4 Latin square design including four periods, four horses and four feeds. In general, the CP content decreased whereas the aNDFom content increased as the grasses matured. The content of WSC increased in SB and TI, but decreased in CF, and fructans increased in SB, TI, PR, and TF as they matured. The in vitro MGP showed a clearer difference between harvest times than between grass species. Harvest time had larger effect on digestibility than grass species, and a high precaecal disappearance of the WSC fraction was measured by the mobile bag technique. Cocksfoot was identified as a grass species with potentially low digestibility and low WSC content and could potentially be used more for horses.


Feedstuffs contain different carbohydrate fractions that are digested in different parts of the gastrointestinal tract of horses. Grass for grazing or harvesting contains variable amounts of structural carbohydrates such as cellulose and hemi-cellulose (named fibres) and nonstructural carbohydrates which in temperate grass species include sugars and fructans (named water soluble carbohydrates (WSC)). This study quantified carbohydrate composition and digestion of six grass species (perennial ryegrass, timothy, smooth bromegrass, tall fescue, cocksfoot, and meadow fescue) harvested at three different times (early, medium, and late) and preserved as hay. In general, fiber content increased as the grasses matured, whereas WSC content varied to a large extent. In vitro fermentation using horse caecal fluid was used to quantify digestion of early and late cut grass samples of all species. Harvest time (early vs. late) had a larger effect on in vitro fermentation compared to the effect of grass species. Early and late harvested perennial ryegrass and cocksfoot were further selected for detailed studies of precaecal digestion in vivo as these species had highest and lowest WSC content. In general, cocksfoot was identified as grass species with low digestibility and low WSC concentration compared to the other species investigated.


Assuntos
Festuca , Lolium , Cavalos , Animais , Digestão , Carboidratos , Poaceae/química , Phleum , Dactylis , Proteínas/metabolismo , Ração Animal/análise , Rúmen/metabolismo
12.
J Hazard Mater ; 445: 129899, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36493643

RESUMO

The uptake by and distribution of Zn and Pb within a novel seed-based Miscanthus hybrid grown in contaminated soil was assessed. Results from juvenile plants in a pot-trial was compared with data for mature biomass of the same species harvested during a field-trial. Both Zn and Pb uptake by juvenile plants were observed to increase in proportion to the soil concentrations. Both Zn and Pb accumulation differed between leaf and stem structures, and both were different in the mature biomass compared with juvenile plants. Analysis of X-Ray Absorption Fine Structures (XAFS) revealed different Zn speciation in stems and leaves, and differences in Zn speciation with plant maturity. Sulfur ligands consistent with the presence of cysteine rich metallothioneins (MT) and phytochelatin (PC) complexes were the dominant Zn species in juvenile plant leaves, together with octahedral O/N species typified by Zn-malate. Sulfur ligands were also prevalent in stems from juvenile plants, but predominant O/N speciation shifted towards tetrahedral coordination. In contrast, tetrahedral Zn coordination with O/N species predominated in the mature biomass crop. The XAFS spectra for the mature biomass were consistent with Zn being retained within cell walls as pectin and/or phosphate complexes.


Assuntos
Metais Pesados , Poluentes do Solo , Chumbo/análise , Ligantes , Poluentes do Solo/análise , Poaceae/química , Plantas , Solo/química , Zinco/análise , Enxofre , Metais Pesados/análise
13.
Molecules ; 27(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36557878

RESUMO

Coexisting salt and alkaline stresses seriously threaten plant survival. Most studies have focused on halophytes; however, knowledge on how plants defend against saline-alkali stress is limited. This study investigated the role of Taraxacum mongolicum in a Puccinellia tenuiflora community under environmental saline-alkali stress to analyse the response of elements and metabolites in T. mongolicum, using P. tenuiflora as a control. The results show that the macroelements Ca and Mg are significantly accumulated in the aboveground parts (particularly in the stem) of T. mongolicum. Microelements B and Mo are also accumulated in T. mongolicum. Microelement B can adjust the transformation of sugars, and Mo contributes to the improvement in nitrogen metabolism. Furthermore, the metabolomic results demonstrate that T. mongolicum leads to decreased sugar accumulation and increased amounts of amino acids and organic acids to help plants resist saline-alkali stress. The resource allocation of carbon (sugar) and nitrogen (amino acids) results in the accumulation of only a few phenolic metabolites (i.e., petunidin, chlorogenic acid, and quercetin-3-O-rhamnoside) in T. mongolicum. These phenolic metabolites help to scavenge excess reactive oxygen species. Our study primarily helps in understanding the contribution of T. mongolicum in P. tenuiflora communities on coping with saline-alkali stress.


Assuntos
Taraxacum , Álcalis , Poaceae/química , Cloreto de Sódio/metabolismo , Solução Salina , Aminoácidos/metabolismo
14.
PLoS One ; 17(11): e0277091, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36322593

RESUMO

The use of multispecies swards on livestock farms is growing due to the wide range of benefits they bring, such as improved biomass yield and animal performance. Preferential uptake of micronutrients by some plant species means the inclusion of legumes and forbs in grass-dominated pasture swards could improve micronutrient provision to livestock via careful species selection. However, although soil properties affect plant micronutrient concentrations, it is unknown whether choosing 'best-performing' species, in terms of their micronutrient content, needs to be soil-specific or whether the recommendations can be more generic. To address this question, we carried out an experiment with 15 common grass, forb and legume species grown on four soils for five weeks in a controlled environment. The soils were chosen to have contrasting properties such as texture, organic matter content and micronutrient concentrations. The effect of soil pH was tested on two soils (pH 5.4 and 7.4) chosen to minimise other confounding variables. Yield was significantly affected by soil properties and there was a significant interaction with botanical group but not species within a botanical group (grass, forb or legume). There were differences between botanical groups and between species in both their micronutrient concentrations and total uptake. Micronutrient herbage concentrations often, but not always, reflected soil micronutrient concentrations. There were soil-botanical group interactions for micronutrient concentration and uptake by plants, but the interaction between plant species (within a botanical group) and soil was significant only for forbs, and predominantly occurred when considering micronutrient uptake rather than concentration. Generally, plants had higher yields and micronutrient contents at pH 5.4 than 7.4. Forbs tended to have higher concentrations of micronutrients than other botanical groups and the effect of soil on micronutrient uptake was only significant for forbs.


Assuntos
Fabaceae , Oligoelementos , Animais , Solo/química , Micronutrientes , Poaceae/química , Plantas
15.
Int J Biol Macromol ; 223(Pt A): 1243-1256, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36395932

RESUMO

Biobased packaging materials derived from carbon-neutral feedstocks are sustainable alternatives to conventional fossil-based polymers. In this study, a method was developed to prepare paper-sheets derived from Miscanthus × giganteus cellulose fibers for potential food contact applications. The papers were hydrophobized with modified lignin from Miscanthus × giganteus biomass and commercial Kraft alkali lignin through hydroxyethylation with ethylene carbonate, followed by esterification with propionic acid. The esterified lignin (10 % w/w) and cellulose acetate (5 % w/w, based on lignin content) were dissolved in acetone and applied as a coating on the miscanthus paper sheets. The esterified lignins were characterized using FTIR, NMR, DSC, TGA, and elemental analyses. The uncoated and coated paper-sheets had contact angle values 52.4° and >130°, respectively, indicating an increased surface hydrophobicity of the coated paper samples. The water vapor transmission rate decreased significantly from 213.7 (uncoated paper-sheet) to 63.3 g/m2.d (coated paper-sheet). The tensile strength of the coated paper (64.6 MPa) was higher than the uncoated counterpart (57.1 MPa). Results from this study suggest that the esterified lignin coated miscanthus paper is a promising hydrophobic food packaging material alternative to conventional fossil-based thermoplastics.


Assuntos
Celulose , Lignina , Lignina/química , Celulose/química , Poaceae/química , Biomassa , Interações Hidrofóbicas e Hidrofílicas
16.
Appl Environ Microbiol ; 88(21): e0094222, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36226941

RESUMO

Grasses harbor diverse fungi, including some that produce mycotoxins or other secondary metabolites. Recently, Florida cattle farmers reported cattle illness, while the cattle were grazing on warm-season grass pastures, that was not attributable to common causes, such as nutritional imbalances or nitrate toxicity. To understand correlations between grass mycobiome and mycotoxin production, we investigated the mycobiomes associated with five prominent, perennial forage and weed grasses [Paspalum notatum Flügge, Cynodon dactylon (L.) Pers., Paspalum nicorae Parodi, Sporobolus indicus (L.) R. Br., and Andropogon virginicus (L.)] collected from six Florida pastures actively grazed by livestock. Black fungal stromata of Myriogenospora and Balansia were observed on P. notatum and S. indicus leaves and were investigated. High-throughput amplicon sequencing was applied to delineate leaf mycobiomes. Mycotoxins from P. notatum leaves were inspected using liquid chromatography-mass spectrometry (LC-MS/MS). Grass species, cultivars, and geographic localities interactively affected fungal community assemblies of asymptomatic leaves. Among the grass species, the greatest fungal richness was detected in the weed S. indicus. The black fungal structures of P. notatum leaves were dominated by the genus Myriogenospora, while those of S. indicus were codominated by the genus Balansia and a hypermycoparasitic fungus of the genus Clonostachys. When comparing mycotoxins detected in P. notatum leaves with and without M. atramentosa, emodin, an anthraquinone, was the only compound which was significantly different (P < 0.05). Understanding the leaf mycobiome and the mycotoxins it may produce in warm-season grasses has important implications for how these associations lead to secondary metabolite production and their subsequent impact on animal health. IMPORTANCE The leaf mycobiome of forage grasses can have a major impact on their mycotoxin contents of forage and subsequently affect livestock health. Despite the importance of the cattle industry in warm-climate regions, such as Florida, studies have been primarily limited to temperate forage systems. Our study provides a holistic view of leaf fungi considering epibiotic, endophytic, and hypermycoparasitic associations with five perennial, warm-season forage and weed grasses. We highlight that plant identity and geographic location interactively affect leaf fungal community composition. Yeasts appeared to be an overlooked fungal group in healthy forage mycobiomes. Furthermore, we detected high emodin quantities in the leaves of a widely planted forage species (P. notatum) whenever epibiotic fungi occurred. Our study demonstrated the importance of identifying fungal communities, ecological roles, and secondary metabolites in perennial, warm-season grasses and their potential for interfering with livestock health.


Assuntos
Emodina , Micobioma , Micotoxinas , Bovinos , Animais , Poaceae/química , Estações do Ano , Cromatografia Líquida , Espectrometria de Massas em Tandem , Gado , Geografia , Folhas de Planta , Estruturas Fúngicas
17.
Trop Anim Health Prod ; 54(6): 342, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36221046

RESUMO

The study aimed at the effect of different regrowth ages on chemical, productive, and morphological characteristics, in addition to the kinetics of gas production and in vitro digestibility of grasses of the genus Brachiaria. The treatments consisted of two regrowth ages (21 and 35 days) and two grass species (Brachiaria brizantha and B. ruziziensis), in plat with a dimension of 10 × 10 with four replications, totaling 16 plats in a completely randomized design. The regrowth age did not change the leaf:stem ratio of the grasses. Ruziziensis-grass had higher crude protein (CP) content in leaves than Marandu-grass (14.0% versus 10.9% respectively). Marandu-grass leaf had higher NDF content than Ruziziensis-grass (65.0 and 58.3%, respectively) and ADF content (39.6 and 33.2%, respectively). The accumulation rate is high in Marandu-grass regardless of the age of regrowth; however, the in vitro digestibility of dry matter of Ruziziensis-grass is better both in the leaf and in the stem. The regrowth age did not influence the dry matter (DM) and neutral detergent fiber (NDF) in vitro digestibility (ivD) of the leaves. The ivDNDF of leaves of both types of grass were similar. There was an increase in the ivDDM of stem when the regrowth age was 21 days. The DM degradation rate was higher in Marandu-grass at both regrowth ages, and the total gas production was higher at 21 days. The parameters evaluated in the dual-pool logistic model showed interaction for age and cultivar, except for fractions λ (lag time) and total gas production. Marandu-grass presented a greater volume of gas for the rapidly degradable fraction and a lower degradation rate. There was a significant interaction for the parameters evaluated in the models between ages and grasses. The exponential model showed interaction in all fractions. Grasses had reduced CP content and increased fibrous fraction as a function of age, with no reduction in leaf DM and NDF digestibility. The Ruziziensis-grass has higher digestibility at the regrowth ages evaluated, while Marandu-grass has higher yields. We recommend adjusting the in vitro degradation kinetics by the dual-pool logistic model.


Assuntos
Brachiaria , Poaceae , Ração Animal/análise , Animais , Detergentes/metabolismo , Fibras na Dieta/metabolismo , Digestão , Poaceae/química
18.
Int J Biol Macromol ; 222(Pt B): 1840-1851, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36198366

RESUMO

In recent years, efforts have been made to reduce deforestation to conserve the ecosystem. In the current scenario, agro-cultivated products are used instead of wood for engineering applications. Thus, natural lignocellulosic fibres are used as a reinforcing material and have been extremely attractive to industries and the scientific community during the past few decades. This study aimed to examine the use of natural fibres extracted from Typha angustata grass as reinforcement in polymer matrix composites. The density of the fibres was 1.015 g/cc. Chemical analysis confirmed that T. angustata fibres (TAFs) have a cellulose content of 73.54 wt%, a hemicellulose content of 10.11 wt%, a lignin content of 6.23 wt% and a wax content of 0.23 wt%. The crystallinity index (65.16 %) and crystalline size (6.40 nm) were identified by X-ray diffraction (XRD) analysis. The presence of functional groups in the TAFs was examined by employing Fourier-transform infrared spectroscopy (FTIR). The presence of cellulose at peak intensities of C2, C3 and C5 in the TAFs was confirmed using 13C nuclear magnetic resonance (NMR) spectroscopy. The single fibre tensile test revealed that the tensile strength was 665 ± 7 MPa and Young's modulus was 27.45 ± 3.46 GPa. The thermal stability of the TAFs was examined by thermogravimetric analysis (TGA), and the prominent peak was observed at 298.48 °C, with a kinetic activation energy of 67.99 kJ/mol. The surface roughness of the fibres was analysed by atomic force microscopy (AFM) with an accuracy of 1 nm. The above-mentioned outcomes indicated that the TAFs have desirable properties that are comparable to existing natural fibres and suggested to be utilised as the possible reinforcement to fabricate the fibre-reinforced polymer matrix composites.


Assuntos
Poaceae , Typhaceae , Poaceae/química , Ecossistema , Celulose/química , Polímeros
19.
Chemosphere ; 308(Pt 2): 136409, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36108759

RESUMO

The work is devoted to evaluation of the ability of Phragmites australis Сav. to indicate the soil pollution with heavy metals (HMs) and priority polycyclic aromatic hydrocarbons (PAHs) by studying changes in the plant's ultrastructure. The concentration of Mn, Cu, Cr, Cd, Pb, Zn, Ni as well as 16 priority PAHs in hydromorphic soils and macrophyte plants (Phragmites australis Cav.) were increasing with distance decreasing to the power station and approaching to the direction of prevailing wind (northwest). The analyze of distribution of the studied pollutants in plants showed that the highest concentration have prevailed in the roots. A decrease in the diameter of the roots, and an increase in the thickness of the leaf blade was established. The transmission electron microscopy analysis showed that the ultrastructure of P. australis chloroplasts changed affected by accumulation of HMs and PAHs: a rise in the number of plastoglobules; a drop in the number of lamellae in granules, as well as changes in the shape, size, and electron density of mitochondria and peroxisomes. The most serious destructive violations of the main cellular organelles were noted for plants from the site within a 2.5 km from the emissions source and located on the predominant wind rose (north-west) direction. These macrophytes reflect spatial variations of pollutants metals in hydromorphic soils, therefore they are of potential use as bioindicators of environmental pollution.


Assuntos
Metais Pesados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Cádmio/análise , Biomarcadores Ambientais , Monitoramento Ambiental , Poluição Ambiental/análise , Chumbo/análise , Metais Pesados/análise , Poaceae/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo , Poluentes do Solo/análise
20.
Bioresour Technol ; 360: 127545, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35777637

RESUMO

Bidirectional cross flow wetlands with different plant species were set to investigate seasonal variation in radial oxygen loss (ROL) and its effects on COD and NH4+-N removal. Findings demonstrated a strong seasonal effect on the rate of ROL, with Arundo donax var.versicolor showing the highest ROL of 2.99 µmol·h-1·g-1. Additionally, ROL showed strong positive correlations with plant total biomass (P < 0.01), aboveground biomass (P < 0.01), height, maximum root length (P < 0.01), root porosity (P < 0.01), and removal efficiency of COD and NH4+-N (P < 0.01). Furthermore, high-throughput sequencing analysis of substrate samples from three wetland units planted with Thalia dealbata, Canna indica and Arundo donax var. versicolor revealedProteobacteria as the predominant rhizospheric phylum. Relative abundance of Alpha- and Gamma-Proteobacteria were higher in the Arundo donax var.versicolor samples due to its higher oxygen transport capacity. These results demonstrate that root properties are important determinants for selecting appropriate plants for constructed wetland.


Assuntos
Oxigênio , Áreas Alagadas , Biomassa , Nitrogênio/análise , Nutrientes , Plantas , Poaceae/química , Eliminação de Resíduos Líquidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...